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Abstract

The most widely used metric for assessing a scale’s reliability is Cronbach’s alpha. 
Since its introduction in 1951 by Lee Cronbach, it has evolved into the accepted 
benchmark for scale reliability. A quick search for ‘Cronbach’s alpha’ in Google 
Scholar yields more than 8 hundred thousand results. By any measure, this is 
enormous, and the usage of alpha appears to be present in practically every domain 
of academics. The fact that alpha has been so successful is surprising, as researchers 
have consistently criticised and have pointed out a plethora of problems with it. 
For instance, is that Cronbach never suggested alpha as a reliability metric—
rather he proposed alpha as an alternative measure for equivalency in a test-
retest context. Another issue Cronbach never suggested the lower bound of 
0.70 as a benchmark of reliability. However, the lower bound of 0.70 has become 
the holy grail of scale reliability. Alpha continues to lead all measures of scale 
reliability despite its numerous issues. This article examines the history of alpha, 
its derivations based on classical test theory, and its limitations. It then suggests 
three alternative measures, along with software procedures to calculate them: 
alpha with confidence interval, omega and greatest lower bound. The purpose of 
this article is to enable researchers to have a better idea about the limitations of 
Cronbach’s alpha, and to make them aware of other measures of reliability which 
are available. It is hoped that this article will help researchers report better and 
more accurate reliability measures in their research works alongside the alpha.
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Introduction

Measurement is an integral part of the modern world, but its origins can be traced 
back to the barter system. Before a farmer could agree to barter his produce, he 
needed to establish a common ground on which the exchange could take place. 
Fortunately, in the natural sciences, measurement systems evolved at a rapid pace 
and were accepted worldwide. However, developing measurement systems in the 
social sciences proved to be more difficult as social scientists were forced to 
measure abstract concepts. For example, measuring ‘happiness’ is not as easy as 
asking how happy you are? Social, economic, legal and other factors determine 
the meaning of happiness. Despite these issues, it became necessary to measure 
these abstract concepts, to provide accurate information for decision-making in 
various fields. This requirement for measuring items that were not directly 
observable led to a huge interest in the development and validation of such scales 
in psychology and related fields.

For some reason, Cronbach’s alpha has become the standard on which the 
reliability of such measurements is judged. However, to quote the famous author, 
‘The numerous citations to my article by no means indicate that the person who 
cited it had read it’ (Cronbach & Shavelson, 2004). Such a strong criticism from 
the author has not dented the image of alpha, and it continues to be cited with 
aplomb by researchers worldwide.

This article examines the evolution of Cronbach’s alpha, the limitations 
associated with its use, and a few alternative approaches. In part two, we provide 
a concise overview of the reliability measures before alpha. Part three covers the 
classical test theory (CTT), whereas part four focuses on the derivation of alpha. 
Part five covers the concerns related to alpha, while part six explores three 
alternatives to alpha: alpha with confidence intervals (CIs), McDonald’s omega 
and the greatest lower bound (GLB). Part seven employs a readily accessible data 
set to illustrate the computation of different options. This work aims to enhance 
scholars’ comprehension of the issues involved with Cronbach’s alpha, while also 
stimulating consideration of alternative metrics.

Reliability Measures Before Alpha

Reliability has been one of the main concerns of researchers for a long time; however, 
reliability is not easily determined in the real world. To accurately demonstrate the 
reliability of a scale it is necessary to replicate the scale on two or more similar 
populations and compare the results. This is easier said than done as the subject may 
not be available for subsequent testing. The problem was first investigated by 
Spearman who proposed the split-half approach (Brown, 1910; Spearman, 1910). The 
approach, more commonly known as the Spearman–Brown procedure was the 
standard for testing reliability for the next 40 years (Cronbach, 1951).

The split-half method was criticised due to its inability to provide a single 
coefficient value for the test result. The coefficient value depended on the 
randomness of the split and thus made it extremely confusing for the researchers 
to identify a single measure of reliability. Kuder and Richardson (1937) proposed 
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a series of coefficient measures, one of which (KR20) was adopted by many 
researchers. Another criticism levied against the split-half method was that it was 
unclear what it was measuring (Goodenough, 1936).

Cronbach’s proposed the idea of stability and equivalence in place of reliability 
(Cronbach, 1947). According to him an identical re-test after a certain amount of 
time indicates how stable the scores are over time and therefore should be called 
the coefficient of stability. On the other hand, the correlation between two forms 
of a test given at the same time represents equivalence and therefore should be 
called the coefficient of equivalence. Cronbach (1951) makes it quite clear that 
the coefficient alpha is a measure of equivalence.

One thing to note is that when Cronbach’s formulated coefficient alpha, he did 
not base his derivation on CTT simply because CTT was propounded much later 
by Novick (1966). A detailed reading of the original article reveals that alpha was 
developed not to test scale reliability but to understand relationships between 
‘similar’ test forms using correlations. This led to various interpretations of alpha 
and gradually it started to be used as a measure of reliability (Sijtsma, 2008).

A Brief Deviation into CTT

For the sake of understanding a discussion on CCT is provided. CTT assumes that 
each scale item has been administered an infinitely large number of times and the 
scores of such administration are available and observable. Let us denote this 
observable score using X pi  for the person p  observed at the period i . The average 
of all such observable scores is the true score of the scale item and is denoted by 
Tp . CTT assumes that the true score is consistent and any variation which is seen 
or recorded occurs due to random measurement errors denoted by epi . Hence, the 
observed score is comprised of the true score and the error component as follows 
X T epi p pi� � . This indicates that the variance of the individuals observed score 
consist of the variance of the true score and the variance of the error component 
s s sXi T ei

2 2 2� �  under the assumption of cov T ei,� � � 0  and cov e ei j,� � � 0 .

This provides sufficient information to define reliability under CTT. If there is 
low variability between the observed scores from one test to another, it would 
mean that the error component is low. This would indicate that the correlation 
between the observed score and the true score is high. On the other hand, if the 
observed scores change substantially from one test to another; that would imply 
that the error is substantial and therefore the correlation between the observed 
score and true score would be low. Reliability under CTT is defined as the square 
of the correlation, in the population, between observed and true scores. In a more 
formal sense, reliability can be defined as the proportion of true score variance to 
total variance ( s sT Xi

2 2/ ).
Assumptions about the true score, their variances and their relationship with 

the error terms define the four basic measurement models in CTT. These models 
are summarised in Table 1 with b  and d  being real numbers not equal to zero. 
Cronbach’s alpha is presented under the tau-equivalence conditions of CTT.
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Another term that is related, but conceptually different, is internal consistency 
which is concerned with the homogeneity of the items within a scale. According to 
CTT, the relationships among the measured items are logically connected to the 
scale and to each other. Given that the scale is designed to capture a similar set of 
phenomena (e.g., job satisfaction) we can think that the measurement items used to 
capture ‘job satisfaction’ correlate strongly to the scale and, hence, by assumptions 
of CTT, to each other. We cannot determine whether the measured items are strongly 
correlated to the true scale item (as it is an unobservable latent variable), but we can 
measure the correlations between the measurement items. In other words, a scale is 
internally consistent provided that the measurement items are highly correlated to 
each other. Researchers need to be clear on the difference between reliability and 
internal consistency as both measure conceptually different things.

Derivation of Cronbach’s Alpha

In this section, a simplified version of the derivation of alpha based on the book 
by DeVillis (2003) is presented. Let us consider that a scale item Y  which is made 
up of X X X Xk1 2 3, , , ,…  measurement items. The covariance matrix (C) for the 
measurement items can be written as
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The diagonal elements of the matrix are the variances (�� ��ii i� 2 ) and the off-
diagonal are the covariances. Each variance contains information regarding the 
variation of only one measured item and the covariances contain information 
about the variation of two of the measured items. Now as the covariances represent 
the communal (or joint) variation; all non-communal variation is represented by 

Table 1. The Four Measurement Models of CTT.

Measurement 
Model True Score Variance Error Terms

Parallel Ti  = Tj Var (Ti ) = Var (Tj ) Var (Ei ) = Var (Ej )
Tau equivalence Ti  = Tj Var (Ti ) = Var (Tj ) Var (Ei ) ≠  Var (Ej )
Essentially tau 
equivalence

Ti  = T dj + Var (Ti ) = Var (Tj ) Var (Ei ) ≠  Var (Ej )

Congeneric Ti  = bT dj + Var (Ti ) ≠  Var (Tj ) Var (Ei ) ≠  Var (Ej )

Source: Warrens (2016).
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the variances. Summing up all the elements of the matrix would give us the total 
variance present in the scale item Y , under the assumption of equal weights of the 
items (Nunnally, 1978).

Alpha is defined as the proportion of the total variance that is attributable to a 
common source. Let σσY

2  denote the sum of all the elements of the matrix C  and 
let ��� i

2  represent the sum of all the diagonal elements of matrix C , then we can 
represent the ratio of non-communal variation to total variation as

	

��
�

i

Y

2

2

And we can express the ratio of communal variation to total variation as follows:
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(2)

Equation (2) captures the essence of Cronbach’s alpha, however it suffers from a 
problem. Let us assume that a scale is made up of five perfectly correlated items. 
Then it should result in perfect reliability. In other words, Equation (2) should 
have the value of 1. But this would not be so as the correlation matrix will have a 
total of 25 entries, all equalling 1. The sum of the diagonals would be 5 and the 
sum of the matrix would be 25 and hence the value of Equation (2) would be 
1 5 25 0 80� � � �/ . . This happens because the total number of elements in the 
covariance matrix is k 2  and the number of elements on the diagonal are only k  
leaving k k2 �� �  off-diagonal elements. In Equation (2) the numerator is based on 

k k2 �� �  values while the denominator is based on k 2  values. To counteract for 

these differences in a number of terms, we multiply the formula by k k k2 2/ �� �  
or equivalently by k k/ �� �1  thereby arriving at the formula for alpha:
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(3)

If we assume that v  is the average variance, then � ��� i
2 k v . Similarly, σσY

2  is the 
sum of all the elements in the matrix C  and if we assume that c  is the average 
covariance then ��Y

2 2� � �� �k v k k c . Substituting them in Equation (3) we get:
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(4)

which on simplification gives:
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k c
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(5)
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The formula in Equation (5) is based on unstandardised (raw) scores. To convert 
it to standardised scores, we need to recall that in a correlation matrix all the 
diagonal values equal 1; hence the average variance would also be one. The off-
diagonal elements represent the correlations and hence the average covariance 
could be replaced by r  or the average intra-item correlation. This gives us the 
standardized alpha formula as

	
� �

� �� �
k r
k r1 1

	

(6)

Issues with Cronbach’s Alpha

Despite its frequent use, Cronbach’s alpha has been criticised heavily by many 
researchers. One set of criticisms comes from the assumptions that are used to 
derive alpha (McNeish, 2017).

Issues Arising from Assumptions

Assumption of Tau-equivalence. One of the requirements for Cronbach’s alpha is 
the assumption of tau-equivalence which states that all the measurement items 
scale contribute equally to the construction of the scale. Any social researcher can 
easily see that such an assumption is impractical in the real world. Almost all the 
scales that are used in the real world are congeneric, meaning that the measured 
items contribute to the latent variable but with different importance (Raykov, 
1997). Being a tau-equivalent measure means that alpha is not an exact measure 
of reliability but a lower bound provided that the errors are reasonably uncorrelated 
(Sijtsma, 2008).

Assumption of Normality and Continuous Items. One of the things to note in 
the derivation of alpha is that it is based on observed covariances and correlations 
between items. Statistical software estimates alpha using Pearson’s covariance 
matrix—which is known to be calculated on continuous data (Gadermann et al., 
2012). On the other hand, the measurement items used to create the scales are 
usually interval or ordinal scales. This means that the covariance matrix so calculated 
would be biased downwards. This leads to lower alpha values because the 
relationships between the items would appear smaller than they are. The use of 
polychoric correlation is recommended for the calculation of alpha under such 
circumstances (McNeish, 2017). Another assumption is that of normality of the 
error terms and the true score. Cronbach’s alpha assumes that the error terms and the 
measurement items are normally distributed; but often empirical data shows non-
normality and correlated errors. This means that Cronbach’s alpha does not reflect 
true reliability. Studies in the area have given mixed results—some arguing that 
Cronbach’s alpha is robust to deviations from non-normality (Zimmerman et al., 
1993) while others argue it is susceptible to non-normality (Sheng & Sheng, 2012).
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Assumption of Uncorrelated Error Terms. Another major requirement of the 
derivation of Cronbach’s alpha is that the error terms of the measurement items be 
uncorrelated to each other. Correlation of errors can arise due to several reasons 
like the order of measurement, respondent fatigue or the unforeseen 
multidimensionality of a scale. When errors are correlated, it is mostly found that 
they are correlated positively. This leads to an overestimation of Cronbach’s alpha 
(Gessaroli & Folske, 2002). While some of the errors can be minimised by 
randomising the test items, others are difficult to identify during the 
conceptualisation and data collection phase.

Assumption of Unidimensionality. Many researchers tend to believe that large 
alpha values indicate unidimensionality, or that the measurement items measure a 
single latent construct. But in real life, even pre-validated scales can show 
multidimensionality when used in a socio-economic context outside of the 
environment in which they were constructed. Multidimensionality comes to light 
when data is being analysed using factor analysis techniques and by that time it 
may be too late to reconstruct a new scale. Another confusion that occurs is that 
many researchers tend to believe that unidimensionality and internal consistency 
are the same—which is untrue. Internal consistency is defined as the 
interrelatedness of a set of items while unidimensionality is the degree to which 
items measure the same latent construct (Schmitt, 1996). Green et al. (1977) have 
pointed out that internal consistency is necessary but not sufficient for 
demonstrating unidimensionality. This means that large alpha values do not 
necessarily guarantee that the measurement items measure a single latent 
construct. It is possible that high values of alpha may be measuring the internal 
consistency of the construct and not unidimensionality.

Other Related Issues

Besides the above, there are other issues related to alpha. One of the most common 
beliefs is that alpha values greater than 0.70 provide excellent reliability. Cronbach 
(1951) never proposed any cut-off values for alpha. The value of �� � 0.70  seems 
to come from the work of Nunnally and Bernstein (1994). Over a period, this has 
become the standard benchmark over which all scale reliability is judged. In fact, 
many researchers have pointed out that there is no universal minimum acceptable 
reliability value for alpha. Any acceptable value depends on the type of application 
and what is being measured (Bonett & Wright, 2015).

Another issue that arises with alpha is that of the bounds. It can be seen from 
Equation (6) that when r = 0 , the value of �� � 0  and when r = 1  the value of 
�� � 1 . The extremely high value of alpha tends to indicate that the items on the 
scale are highly correlated. This could indicate issues of unidimensionality or 
problems of multicollinearity with scale items. As such it is recommended that 
alpha values  >0.90 should be viewed with extreme caution. On the other hand, 
when r <0  the formula does not give a lower bound.

In his original article Cronbach (1951) had demonstrated that alpha is the 
average of all possible split-half coefficients which could be calculated using the 
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Spearman–Brown formula. This result positioned alpha as the expectation of 
split-half reliability values. This has led to the growing belief that alpha is a point 
estimate of reliability and as such it is sufficient to establish reliability. However, 
the reported value of alpha is the sample value (statistic) and contains sampling 
errors. Hence the reported value of alpha may not correctly reflect the reliability 
of the scale in question. It is always advisable to report a CI to give a better 
perspective to reliability (Bonett & Wright, 2015).

With so much criticism of alpha floating around it is surprising that it remains 
one of the most reported methods for reliability. In fact, many researchers conclude 
that the popularity of Cronbach’s alpha is due to inertia—reviewers and publishers 
look for alpha to give some sort of legitimacy to scale items. This was supported 
by the empirical work done by Hoekstra et al. (2019) in which they found that 
74% researchers reported alpha because it was a common practice in the area 
while 53% reported it because the journal demanded it. In the same study, about 
79% of the researchers mentioned that they consider 0.70 or more as a desirable 
level of alpha. Only about 20% of them suggested that the values be either a range 
of values or context-dependent.

Alternative to Alpha

Many alternatives to alpha have been proposed since then. It is not the intent to 
review all the alternatives; but a few of the most common ones are discussed here.

Alpha with CI

The problem with alpha is that researchers tend to report it as a point estimate. In 
statistics, a point estimate is considered the best guess estimate of the unknown 
population parameter. However, in the case of alpha, this is not the case as it clearly 
is a sample statistic and hence can be significantly biased. Interval estimation is a 
natural way of incorporating precision in statistical summary. One way of doing it 
is to use ‘bootstrapping’ using software like R and MATLAB. CI reporting is also 
present in SPSS and will be discussed in the seventh section. Dunn et al. (2014) 
have strongly recommended that alpha be always reported with the CI.

McDonald’s Omega

Another measure that has been regularly proposed is omega (McDonald, 1999). 
The ωωt  coefficient—which is congeneric in nature—uses the factorial analysis 
framework for estimating reliability and is expressed as
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where λλ j  is the loading of item j  and λλ j
2 is the communality of the item j . Now 

1 2�� ��� j  can be thought of as the uniqueness of the item j  and if we replace the 

same with ΨΨ  then the formula reduces to
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(8)

As the ωωt  coefficient makes use of the factor loadings it tends to correct one of 
the key drawbacks of alpha—that is of unidimensionality. Under the condition of 
tau-equivalence, when the factor loadings are equal or extremely close to each 
other, it reduces to alpha. On the other hand, when the assumptions of tau-
equivalence are violated then ωωt  corrects the underestimation bias of alpha (Dunn 
et al., 2014). Various other studies have also found ωωt  to be one of the the best 
alternatives for estimating reliability (Revelle & Zinbarg, 2008; Zinbarg et al., 
2005; Zinbarg et al., 2006).

Another variant of omega was proposed by McDonald (1999) and is known as 
hierarchical omega (ωωh ). It is used when errors in the measured items are 
correlated; or when there is more than one latent dimension present in the scale. 
ωωh , calculates the contribution of each dimension to the total variance and corrects 
for the overestimation bias in multidimensional data. Under unidimensionality, 
ωωt  and ωωh  are identical. Most statistical software report ωωt  under the assumption 
that scale is unidimensional.

Greatest Lower Bound

The final measure that is discussed is known as the GLB (Woodhouse & Jackson, 
1977). Under the assumptions of CTT and a single administration of the scale, the 
covariance matrix of observed scores (CY ) is decomposed into the sum of the 
covariance matrix of true scores (CT )and the error covariance matrix (CE ). The 
error covariance matrix (CE ) is diagonal with error variances on the main diagonal 
and off-diagonal are all zeros as per the assumptions of CTT. All three matrices 
are assumed to be positive semi-definite; that is, they have only positive 
eigenvalues. Then the GLB is defined as

	
GLB

trace CE
Y

� �
� �

1 2�

	

(9)

GLB represents the smallest possible reliability given the observed covariance 
matrix under the restriction that the sum of error variances is maximised. For a 
single-scale administration, true reliability is in the interval [GLB, 1]. However, if 
the scale administration can be repeated then GLB would provide a point estimate. 
The biggest problem in computing GLB is finding the trace of CE  and various 
algorithms have been proposed for calculating the trace of CE . One of the most 
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popular methods is that of GLB algebraic (GLBA ) (Moltner & Revelle, 2015). 
The GLBA  algorithm is the most faithful to the original definition of GLB and has 
the added advantage of introducing a weight vector which weighs the items by 
their importance. Studies have demonstrated that GLBA  tends to produce better 
results than alpha and omega (Wilcox et al., 2014).

Finding the Alternatives

Given the drawbacks of Cronbach’s alpha and the availability of alternatives it is 
surprising that alpha is the most reported reliability coefficient. In many cases, 
researchers tend to report alpha values as generated by the software without giving 
much thought to the appropriateness of the scale. This is because they tend to use 
‘standardized’ scales which they assume would be equally applicable in a context 
outside of the origin of the development of the scales (Maurya et al., 2023; Rao & 
Lakkol, 2023).

In this section, we demonstrate how to calculate the measures using SPSS and 
R statistical software. The data set used is ‘staffsurvey.sav’ (Pallant, 2016).1 The 
data set is a part of the staff survey held at Australian universities and has 10 
questions on a five-point scale. These questions are scored on agreement and 
importance. In the SPSS data set q1a represents the score of statement 1 on 
agreement and q1im represents the score on importance. The analysis is done on 
the agreement responses only.

Using SPSS to Generate CI for Alpha

To generate the CI for alpha we need to use the menu sequence 
Analyze Scale Reliability Analysis→ → . This opens the RELIABILITY 
ANALYSIS dialogue box. On the bottom right we have the Model drop-down 
selector which allows us to select Alpha, Split-Half, Gutmann (all lambda’s), 
parallel and strict-parallel modes. On the top right is the statistics button. Clicking 
on this button brings up the RELIABILITY ANALYSIS: STATISTICS dialog 
box. Next, we need to click on the Intraclass Correlation Coefficient and select 
the CI. Figure 1 shows the steps in detail. Now we click on continue and finally 
on the OK button to run the analysis. The output from SPSS is shown in Table 2.

The single measure intraclass correlation is the average intra-item correlation 
and the average measure intraclass correlation is the alpha value along with the 
95% CI. The 95% CI has the value of [0.824, 0.865] which suggests that these set 
of items provides excellent reliability.

Using R and the psych Package

In the R ecosystem, the package psych (Revelle, 2023) provides a useful addition 
to the repertoire for the calculation of various reliability measures. The same data 
set was analysed using the psych package and the results are presented below. The 
code is provided in Annexure A.
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The alpha() command reports raw alpha, standardised alpha, Guttman’s λλ6 , 
the average value of intraclass correlations and other statistics. It also provides the 
95% CI of alpha using the older Feldt et al. (1987) and the newer Iacobucci and 
Duhachek (2003) methodology.

Based on the output of alpha it may be concluded that the items used in the 
scale are extremely reliable. However, when we run the omega() command the 
software reports ‘omega total ( )ωωt ’ and omega hierarchical ( )ωωh along with a 
bunch of other statistics. As omega is based on a factor analysis framework it also 
produces a graph showing an estimated number of factors along with the 
interrelations between the various scale items. Table 3 provides the output of the 
omega command.

The output shows the alpha value, Guttman’s λλ6  and the omega hierarchical, 
omega hierarchical asymptotic and omega total values. Table 3 provides a 
completely different take on the outputs of Table 4—as the values are calculated 
using multiple random splits. The lower bound of alpha is 0.55 which automatically 
makes the scale a suspect even though the upper bound and the estimated values 

Figure 1.  How to Calculate Alpha Confidence Intervals in SPSS.

Source: The snapshot is taken by the author in IBM SPSS Statistics version 21.

Table 2. Intraclass Correlation Coefficient Table as Generated by SPSS.

Intra-
class 

Correla-
tion

95% Confidence 
Interval F Test with True Value 0

Lower 
Bound

Upper 
Bound Value df1 df2 Sig

Single 
mea-
sures

0.354 0.319 0.391 6.474 490 4,410 0.000

Average 
mea-
sures

0.846 0.824 0.865 6.474 490 4,410 0.000

Source: Computed from the staffsurvey.sav data set by the author.
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are consistent with Table 4. The omega_tot values seem excellent; but the omega_h 
and omega_lim values are extremely problematic.

Scale development in social sciences is majorly based on the assumption that 
the items in the scale measure a single latent variable. However, the internal 
structure of the scale is not taken into consideration. Omega uses the Schmid–
Leiman transformation to identify the unidimensionality of the scale (Schmid & 
Leiman, 1957). Figure 2 shows the graphical output for the scale items.

The pictorial output of omega shows that there is a ‘third order factor’ denoted 
by g and there are three second order factors namely F1, F2 and F3. Another 
interesting thing to note is that g relies on eight measured variables. F2 seems not 
to be correlated with any of the measured variables while the bulk of measured 
variables load on F1. Item q8a loads negatively on F1 and either is a reversed 
measurement (in which case it needs to be corrected) or it is not a part of the 
measurement indicating that it may be needed to be dropped from the analysis. 
Thus, the omega analysis provides a deeper insight into the scale development 
process. Readers attempting to replicate the analysis should note that as the splits 
are random (n.iter = 10) they may get slightly different figures.
GLBA  calculation requires the covariance matrix and the covariance matrix 

can be used in the glb.algebriac() command to get the values. The function does 
not check for positive semi-definiteness of the covariance matrix. In case of 
empirical matrices with small sample sizes, calculated values of GLBA  may be 
strongly biased upwards. Table 5 provides the output of GLB.

GLB represents the smallest possible reliability given the observed covariance 
matrix under the restriction that the sum of error variances is maximised. For a 
single-scale administration, true reliability is in the interval [GLB, 1]. Variable 
q4a, q5a and q9a may seem problematic as their estimates are greater than 1. 
Similarly, q1a and q8a can also be a cause of concern due to their low estimates.

Table 3. Output for the Omega Command.

Lower Estimate Upper

omega_h 0.21 0.58 0.63

alpha 0.55 0.84 0.85

omega_tot 0.76 0.88 0.87

G6 0.73 0.85 0.85

omega_lim 0.30 0.66 0.77

Source: Computed from the staffsurvey.sav data set by the author.

Table 4. 95% Confidence Boundaries of Alpha.

Lower Alpha Upper

Feldt 0.82 0.84 0.87

Duhachek 0.82 0.84 0.87

Source: Computed from the staffsurvey.sav data set by the author.
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Figure 2. The Omega Factor Analysis Output (sl = TRUE).

Source: Computed from the staffsurvey.sav data set by the author.

Table 5. Output of the glb.algebraic() Command.

GLB Estimate

glb [overall] 0.9037

q1a 0.2268

q2a 0.4799

q3a 0.5964

q4a 1.2833

q5a 1.0136

q6a 0.7004

q7a 0.5950

q8a 0.2333

q9a 1.0654

q10a 0.7102

Source: Computed from the staffsurvey.sav data set by the author.
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In this section, we have calculated alpha, omega and GLB. Based on alpha we may 
have concluded that the scale is a robust scale but analysis with omega and GLB tends 
to indicate issues with the items and consequently the scale development process.

Summary

This article does not criticise Cronbach’s alpha or claim to encompass all reliability 
calculations and reporting methods. The reliability literature is broad and over a 
century old. Due to the widespread use of alpha in social science and the lack of 
understanding surrounding it, this article aims to educate researchers about the 
various problems and associated issues with alpha and provide them with easy-to-
calculate alternatives that provide deeper insights into reliability. It is suggested 
that researchers should use two or more different metrics to better comprehend the 
reliability of scales. With the passage of time, it has become necessary to use and 
report better measures of reliability social science literature.

Annexure A: Code for Analysis

## Install the necessary packages.
install.packages("psych", dependencies = TRUE)
install.packages("psychTools", dependencies = TRUE)
install.packages("foreign", dependencies = TRUE)
install.packages("tidyr", dependencies = TRUE)

## Load the packages and make it available to R
library(psych)
library(psychTools)
library(foreign)
library(tidyr)

## Read in the SPSS File using a dialog box.
spssdb <- file.choose()
myData <- read.spss(spssdb, use.value.labels = FALSE, to.data.frame = TRUE,
use.missings = FALSE)

## See whether the data set was read in correctly. The dim() command should give
## the output as 536 30 indicating 536 rows and 30 columns
head(myData)
dim(myData)

## Drop all rows with NA or missing values
myData2 <- myData %>%
drop_na()

## myData2 should have 330 rows and 30 variables
dim(myData2)

## Copy all the column variables which have “agreement scores” to a new dataframe
## The new dataframe should have 330 rows and 10 columns
newDf <-myData2[, c(6, 8, 10, 12, 14, 16, 18, 20, 22, 24)]
dim(newDf)
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## Calculate Alpha
alpha(newDf, use = "complete", impute = "mean", check.keys = TRUE)
print(alpha.ci(.84, 330, p.val=.05, n.var = 10))

## Calculate Omega
omega(newDf, n.iter = 10, digits = 4, sl = TRUE)

## Convert the dataframe to a covariance matrix and calculate the GLB
covMatrix <- cov(newDf)
glb.algebraic(covMatrix)
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